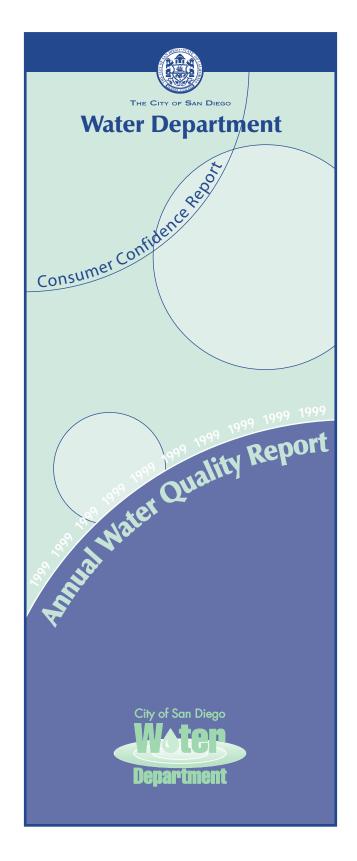
What Improvements Are Being Made To Infrastructure?

The City of San Diego Water Department is currently undergoing an extensive Capital Improvements Program (CIP). The program extends throughout the City, and includes upgrading and expanding the City's water treatment plants, constructing new pump stations and reservoirs, rehabilitating aging facilities, and replacing outdated water mains. The City dedicated approximately \$129 million to water infrastructure improvements in 1999. To find out more about any of the improvements call the CIP Public Information Line at (619) 533-4679.

New Speakers Bureau Program

The Water Department launched its new Speakers Bureau Program in 1999. You can request a speaker to meet with your business, civic or social group to present slide shows on General Water Issues, the Capital Improvements Program, Conservation, Reclamation, and Water Quality and Treatment. In fact, the City made over 150 presentations last year on water issues in San Diego. For more information contact Donna Sharkey, Speaker's Bureau Program Coordinator, at (619) 533-6638.


How Can I Get More Information?

The City of San Diego holds bi-monthly meetings on water issues. Please call our Public Information Line at (619) 533-4679 for more information. For specific questions on water quality, contact John Chaffin, Water Quality Superintendent, at (619) 668-3233. To learn more about the Water Department's various programs including water quality, conservation tips, and lakes and recreation activities, visit us on the internet at: ci.san-diego.ca.us/water.

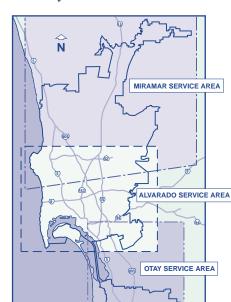
U.S. Postage Paid Permit No. 134 San Diego, CA **BULK RATE**

> Water Department Operations Division 2797 Caminito Chollas, MS 43 92105-5097

> San Diego, CA

This information is available in alternative formats upon request.

What Is This Report About?


This new report provides a snapshot of the quality of water provided to customers last year in the City of San Diego. This new format replaces the previous Water Quality Report. Included are details about where your water comes from, what it contains, and how it compares to state and federal standards. We are committed to providing you with information because informed customers are educated consumers.

El informe contiene información importante sobre la calidad del aqua en su comunidad. Tradúzcalo o hable con alguien que lo entienda bien. Copias en español de este reporte cerca de la calidad de agua están disponibles si llama al (619) 527-3121.

Where Does My Water Come From?

Depending on where you live in the City of San Diego, you get your water from one of three water treatment plants. Their service areas are shown on the map. Customers in the southern communities of San Diego get their water from the Otay Water Treatment Plant, those living in central San Diego get their water from the Alvarado Plant, and customers in the north get water from the Miramar Plant. The City maintains

nine water storage reservoirs which along with water purchased from the San Diego County Water Authority (CWA) constitute the source waters for these plants. The CWA purchases Colorado River and State Water Project water from the Sacramento-San Joaquin Delta in Northern California. It is this constantly changing blend of high total dissolved solids and nutrient-rich imported water that can account for occasional taste and odor problems in your drinking water.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. More information about the United States Environmental Protection Agency (EPA)/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium or other microbial contaminants, and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791). During calendar year 1999, the City of San Diego analyzed all of source waters and Cryptosporidium was not detected.

What Else Should I Know?

In order to ensure that tap water is safe to drink, the California Department of Health Services (DHS) prescribes

regulations which limit the amount of certain contaminants in the water provided by public water systems. The City of San Diego's Water Department treats all our water according to DHS regulations. The DHS also establishes limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPS's Safe Drinking Water Hotline (800-426-4791).

Why Is There Anything In My Water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source waters before we treat it include:

Microbial contaminants – such as viruses, protozoa and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants – such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides – which may come from a variety of sources such as agriculture and residential uses.

Radioactive contaminants – which are naturally occurring.

Organic chemical contaminants – including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

In January 1996, the City of San Diego completed a "Watershed Sanitary Survey." This survey examines the potential impacts of the watershed surrounding the nine reservoirs maintained by the City. The Executive Summary of this document can be requested by contacting the Water Department's Public Information Office at (619) 527-3121. This survey is currently being repeated and the new report will be available after January 2001. We encourage all San Diegans to take an active role in supporting pollution prevention programs in their communities.

1999 Water Quality Results

During calendar year 1999, the City of San Diego's Water Quality Laboratory conducted over 236,000 tests for drinking water contaminants. We only detected 33 contaminants and *none* at a level higher than the state or federal standards allow.

What Do All These Terms And Acronyms Mean?

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the Cal-EPA.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the EPA.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. *Primary* MCLs are set as close to the PHGs (or MCLGs) as is economically or technologically feasible. *Secondary* MCLs (SMCL) are set by the Cal-EPA to control the odor, taste, and appearance of drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, when exceeded, triggers treatment or other requirements that a water system must follow.

Corrosivity: The corrosivity of a sample is measured by the Langlier Stability Index. A positive index, indicating non-corrosivity, was maintained at all our plants.

MDL: The City of San Diego Water Quality Laboratory's Method Detection Limit. Lowest quantitatable concentration of a measured contaminant detectable by the Laboratory.

How Do I Read The Tables?

For calendar year 1999, your tap water met all EPA and DHS drinking water health standards. The City of San Diego's Water Department vigilantly safeguards its water supplies and is proud to report that, in our nearly 100 year history, our extensive water system met all state and federal standards.

Unless otherwise noted, the data presented in these tables are from tests performed between January 1 through December 31, 1999. Certain contaminants are not required by the DHS to be tested for yearly. Therefore, some of the data is more than one year old yet is representative of the water quality. Many other compounds were tested for but were not found at detectable levels. You can request a copy of these test results by contacting the Public Information Office at (619) 527-3121 or find them on the Water Department's web page.

Table 1 lists all the regulated CCR contaminants with Primary MCLs that the City of San Diego's Water Quality Laboratory detected in the drinking water at a level at or above the DHS's Detection Limits for Purposes of Reporting (DLRs) during the 1999 calendar year. The presence of these contaminants in the drinking water does not necessarily indicate that the water poses a health risk.

Table 2 is a listing of regulated contaminants with Secondary MCLs that were detected at or above the DHS's DLR for each contaminant.

Table 3 is a listing of regulated contaminants with no MCLs that were detected at or above the DHS's DLR for each contaminant.

Important Phone Numbers

General Information	(619) 515-3500
Water Conservation	(619) 239-0132
Capital Improvements Program	(619) 533-4679
Water Quality Lab	(619) 668-3232
Emergency Hotline	(619) 515-3525
City Lakes Fishing Line	(619) 465-3474
Public Information Office	(619) 527-3121
EPA Drinking Water Hotline	800-426-4791

Table 1 – Detected Regulated CCR Contaminants with Primary MCLs

Primary Standards (Manda	itory Hea	ilth Related	l Standar	ds) CHEI	VICAL CON	ITAMINANTS	3									
	CCR	MCL	PHG			Treatment Plant Sample										
Contaminant	Units	CCR Units	(MCLG)	MDL	Alvarado	Range	Miramar	Range	Otay	Range	Year	Typical Source of Contaminant				
Fluoride	ppm	2	2	0.03								Erosion of natural deposits; dental hygiene water additives; discharge from fertilizer and aluminum factories				
Total Trihalomethanes	ppb	100	n/a	0.2	< 57.0	<28.2-89.5	<44.8	<24.5-73.0	<80.8	<28.3-110	1999	By-product of drinking water chlorination				

Primary Standards (Manda	tory Heal	Ith Related	l Standar	ds) RADI	OACTIVE C	CONTAMINAT	NTS							
Gross Beta Particle Activity	Gross Beta Particle Activity PCi/L 50 (0) <3.7 nd-8.8 <3.2 nd-7.2 2.6 1.8-4.2 1998 Decay of natural and manmade deposits													
Gross Alpha Particle Activity	pCi/L	15	(0)		3.8	1.6-7.0	4.6	2.2-8.9	2.6	1.7-3.2	1998	Erosion of natural deposits		
Uranium	pCi/L	20	(0)		<1.4	nd-1.8	2.2	1.8-2.5	<0.8	nd-1.1	1998	Erosion of natural deposits		

Primary Standards (Manda	itory Hea	Ith Related	l Standar	ds) MICR	OBIOLOGI	CAL CONTAI	MINANTS					
Total Coliform Bacteria	al Coliform Bacteria less than (0) A 0.8 A - P 0 A 0 A 1999 Naturally present in the environment											
		5% P, TT										
Turbidity	NTU	TT	TT	0.07	<0.11	nd-0.25	<0.12	nd-1.30	<0.14	nd-0.62	1999	Soil runoff

Primary Standards (Manda	itory Hea	Ith Related	Standard	ds) AT TH	IE TAP CO	NTAMINANT	S	
	CCR	MCL	PHG		# sites	# sites	90th	
Contaminant	Units	CCR Units	(MCLG)	MDL	tested	above AL	Percentile	Typical Source of Contaminant
Lead at the Tap	ppb	AL =15	2	0.5	57	1	5.44	Internal corrosion of household plumbing systems;
								discharges from industrial manufacturers; erosion of
								natural deposits

Table 2 – Detected Regulated CCR Contaminants with Secondary MCLs

Primary Standards (Mand	atory Hea	Ith Related	l Standar	ds) CHEI	MICAL CON	TAMINANT:	S						
	CCR	State SMCL	PHG		Treatment Plant Sample								
Contaminant	Units	CCR Units	(MCLG)	MDL	Alvarado Range Miramar Range Otay Range Year Typical Source of Contaminant						Typical Source of Contaminant		
Aluminum	ppb	200	n/a	2	<3.46 nd-18.2 <4.13 nd-14.8 <3.17 nd-8.52 1999 Erosion of natural deposits; residue from some surface water treatment processes						Erosion of natural deposits; residue from some surface water treatment processes		
Color	CU	15	n/a	1	<3	nd-5	<3	nd-4	5	1-9	1999	Naturally-occuring organic materials	
Corrosivity		non- corrosive	n/a								Natural or industrially-influenced balance of hydrogen, carbon and oxygen in water. A positive index indicates that the water is non-corrosive.		
Hardness – Total	ppm	n/a	n/a	0.6	210	168-246	260	238-290	163	153-193	1999	Leaching from natural deposits	
Iron	ppb	300	n/a	50	nd	nd	nd	nd	<50.4	nd-54.7	1999	Leaching from natural deposits; industrial wastes	
Manganese	ppb	50	n/a	0.5	<1.11	nd-2.15	<0.57	nd-0.74	<1.24	nd-3.53	1999	Leaching from natural deposits	
MTBE	ppb	5	n/a	0.2	1.12	0.82-1.42	1.03	0.68-1.50	1.15	0.81-1.48	1999	Leaking underground storage tanks; discharge from petroleum and chemical factories	
Odor – Threshold	OU	3	n/a	1	<1	<1-1	<1	<1	1.80	<1.4-2	1999	Naturally occuring organic materials	
Sodium	ppm	n/a	n/a	5	66.8	53.8-81.1	70.7	50.9-79.9	62.2	51.6-67.6	1999	Leaching from natural deposits	
Turbidity	NTU	TT >5	n/a	0.07	<0.11	nd-0.25	<0.12	nd-1.30	<0.14	nd-0.62	1999	Soil runoff	
Total Dissolved Solids	ppm	1,000	n/a	10	442	316-518	525	479-587	346	312-366	1999	Runoff/leaching from natural deposits	
Specific Conductance	μmhos/cm	1,600	n/a		725	608-863	837	790-933	624	577-719	1999	Substances that form ions in water; seawater influence	
Chloride	ppm	500	n/a	0.5	66.1	54.1-82.8	68.1	54.5-77.9	75.3	62.8-85.6	1999	Runoff/leaching from natural deposits; seawater influence	
Sulfate	ppm	500	n/a	0.5	128	81.8-178	183	153-221	38.6	33.8-42.2	1999	Runoff/leaching from natural deposits; industrial wastes	

Table 3 – Detected Regulated CCR Contaminants No MCLs

Primary Standards (Manda	Primary Standards (Mandatory Health Related Standards) CHEMICAL CONTAMINANTS															
	CCR	MCL	PHG			Treatment Plant										
Contaminant	Units	CCR Units	(MCLG)	MDL	Alvarado	Range	Miramar	Range	Otay	Range	Year					
Bromodichloromethane	ppb	n/a	n/a	0.2	19.9	9.97-29.2	15.8	8.93-23.9	30.1	9.87-45.5	1999					
Bromoform	ppb	n/a	n/a	0.2	<1.47	nd-2.41	<1.62	nd-2.72	<5.33	nd-6.32	1999					
Chlorodibromomethane	ppb	n/a	n/a	0.2	12.2	6.23-16.1	11.2	5.46-15.8	22.9	5.21-32.7	1999					
Chloroform	ppb	n/a	n/a	0.2	23.4	9.75-46.1	16.2	9.48-32.7	24.1	9.30-34.3	1999					
Haloacetic Acids 5	ppb	n/a	n/a	0.5	<23.8	<17.6-<35.2	<16.9	<14.8-<20.2	<27.9	<25.8-<29.4	1999					
Haloketones	ppb	n/a	n/a	0.5	2.19	1.77-2.72	<0.83	<0.73-<0.96	2.67	2.19-3.47	1999					
Haloacetonitriles	ppb	n/a	n/a	0.25	<1.54	<1.34-<1.78	<1.28	<1.06-<1.38	<1.23	nd-<1.60	1999					
Chlorohydrate	ppb	n/a	n/a	0.25	2.25	1.93-2.80	4.06	3.16-5.70	1.88	1.14-3.37	1999					
TOX as Chloride	ppb	n/a	n/a	10	231	181-351	155	119-194	239	128-382	1998					
Disinfectant Residual	ppm	n/a	n/a	0.02	2.34	0.89-3.30	2.50	0.92-3.00	2.41	0.88-3.40	1999					
Cyanogen Chloride	ppb	n/a	n/a	0.5	4.88	1.68-7.23	2.31	1.31-3.06	5.72	2.18-10.2	1999					

ABBREVIATIONS

n/a – not applicable

nd – not detectable at testing limit

ppt – parts per trillion or nanograms per liter (ng/L)

ppb – parts per billion or micrograms per liter (μg/L)

ppm – parts per million or milligrams per liter (mg/L)

[e.g., 1 ppm = 1,000 ppb]

pCi/L – picocuries per liter (a measure of radiation)

Sample Year – This column is to record the last time a contaminant was analyzed.

TT – Treatment Technique: a required process intended to reduce the level of a contaminant in drinking water.

CU – Color Units

AL - Action Level

OU – Odor Units

μ**mhos/cm** – measurement of resistivity

NTU - Nephelonmetric Turbidity Units

TOX – Total Organic Halides

million:

• 3 drops in 42 gallons • 1 second in 12 days

• 1 penny in \$10,000

• 1 inch in 16 miles

• 1 drop in 14,000 gallons • 1 penny in \$10 million

• 1 second in 32 years

• 1 inch in 16,000 miles